

Building Permit Series

Fault Current Calculation Form

Length

Please Print or Type Legibly

Project Name:	FOR CITY USE ONLY		
Permit Number(s):	Date Stamp		
Site Address:			Suite Number(s):
Contractor or Property Owner Name:			
Address:	Phone:		
City:	State:	Zip:	Cell:

Use the following instructions to complete the fault calculation form on the following page. This form shall be completed and submitted prior to service approval; <u>continue with these steps until each panel has been addressed or the fault current is below the minimum equipment rating.</u>

INSTRUCTIONS

Step 1: To calculate the Secondary Transformer (I.C. rating) at its rated voltage, calculate ohms as follows:

	Transformer ohms =	"Y" (defined in Step 3 or Step 4, below)		
	_	Short Circuit Amps		
	120/240V 208Y / 120V 240V Delta 480Y / 277V 480V Delta	1 ohm 3-wire 120 3 ohm 4-wire 102 3 ohm 4-wire 140 3 ohm 4-wire 277 3 ohm 3-wire 277		
Step 2:	Conductor Impedance =	= (Impedance per 1000 ft.) x Conductor		

NOTE

Transformer replacements which result in a higher possible fault current than that of the existing equipment shall be reviewed by this department prior to reconnection of existing service equipment.

1000 x Number of Parallel Runs

Fault Current Calculation Form

	Value	Total Impedance	Fault Current
A. UTILITY TRANSFORMER			
1. Rated Capacity	KVA		
2. Secondary Voltage	Volts	Ohms	
3. Nameplate % Impedance OR	%		
4. Transformer Short Circuit Amps	Amps		
5. Ohmic Impedance ("Y")	Step 1:	Ohms	
B. SERVICE CONDUCTORS			
1. Conductor Size		(Type –	CU or AL)
2. Conductor Length	ft.		
3. Type of Conduit			
4. Impedance/1000 ft.* (ohms/1000)	Ohms		
5. Number of Parallel Runs			
6. Conductor Impedance **	Step 2:	Ohms	
7. Total Impedance to Source (A5 + B6)	_	Ohms	
8. Fault Current at Load Terminals ("Y"/B7)		Step 3:	Amps
C. SERVICE ENTRANCE EQUIPMEN	NT .		
1. Service Rating	Amps		
2. Interrupting Rating			AIC
D. FEEDER CONDUCTOR			
1. Conductor Size			
2. Conductor Length	ft.		
3. Type of Conduit			
4. Impedance/1000 ft.* (ohms/1000)	Ohms		
5. Number of Parallel Runs			
6. Conductor Impedance **	Step 2:	Ohms	
7. Total Impedance to Source (B7 + D6)		Ohms	
8. Fault Current at Load Terminals ("Y"/D7)		Step 4:	Amps
E. FEEDER PANEL			
1. Equipment Rating	Amps		
2. Interrupting Rating			AIC
* Contact Snohomish County PUD for cable im	npedance information.		

Fault Current Calculation Form

** (Impedance per 1000 ft x conductor length) divided by (Number of Parallel Runs x 1000)